High-level Economic Analysis for CO2 Capture, Compression and Transportation

Dane McFarlane

Great Plains Institute

dmcfarlane@gpisd.net

Martin K. Dubois

Improved Hydrocarbon Recovery, LLC

mdubois@ihr-llc.com

In collaboration with Kansas Geological Survey

Context

We outline a variety of scenarios for capture and transportation of large CO2 volumes that are economic at \$70-100 oil.

4.3 million tonne/yr could be captured and transported to Kansas oil fields for \$35-\$42 per tonne (~\$2/mcf).

Proposed 45Q credits (\$35/tonne - \$1.85/mcf) make the business proposition very attractive.

4.3 Mt/yr (221 mmcf/d) used for EOR could increase production in Kansas by 28% (10 million BO/yr).

Outline

Focus mainly on CO2 capture from ethanol plants and transportation to EOR storage sites

- 1. Basis for capital and operating costs (CapX and OpX)
- 2. Describe financial modeling and assumptions
- 3. Economic analysis for multiple scenarios, small to very large
 - Summary of average costs
 - All the details for one scenario
 - Less detail for others
 - Transportation from larger industrial sources (power and refinery)
- 4. Summary and Discussion

Handy conversions, metrics and relationships

Conversions

- 6.624# CO2 / gallon ethanol
- 1 tonne = 1.1 tons
- 1 tonne CO2 = 19 mcf

Scales of CO2 sources

Large Ethanol (313 mgy) 50 mmcfd 0.94 million tonnes/yr

Coffeyville fertilizer plant 40 mmcfd 0.8 million tonnes/yr

Jeffrey Energy Center 650 mmcfd 12.5 million tonnes/yr

Other

- Net Utilization (CO2 stored EOR) ~ 8mcf/BO (0.42 tonne/BO)
 - ✓ 2.4 million BO recovered for million tonnes of CO2
- Proposed 45Q credits \$35/tonne \$1.84/mcf \$0.116/gal eth
- Possible LCFS credits \$70/tonne \$3.68/mcf \$0.232/gal eth

Basis for CapX and OpX for Ethanol Plant Capture, Dehydration and Compression

Capital Expense

- ✓ Cost data for three plant sizes from DOE-funded project reports
- Compression drives most of the cost
- Regression analysis equation related to volume in MGY

CapX (\$million) = 9 + 0.146* MGY

(MGY is plant size in million gallons per year)

Operating Expense

- ✓ Cost data for two 55 MGY plants from DOE-funded project reports
- ✓ Report cost data \$0.0732/kWh.
 Average Kansas industrial -\$0.0709/kWh
- Assumes electrical costs are main OpX and are directly proportional to HP

OpX (\$) = \$8.58/tonne

Pipeline assumptions and cost model

Status

The use of this model requires macros to be enabled.

FE/NETL CO₂
Transport Cost Model

This model estimates costs for transporting dense phase (liquid) CO2 in a pipeline from a source, such as a powe plant, to either a CO2 saline storage site or a CO2 EOR site. This is a point to point transport model and does not account for possible cost reductions from using a larger diameter trunk ploe as part of a pipeline network. The

model includes costs for constructing the pipeline, including booster pumps if desired. The model also includes costs for operating the pipeline. To use the model, change any of the inputs, which are always orange cells, to the values appropriate for your projec

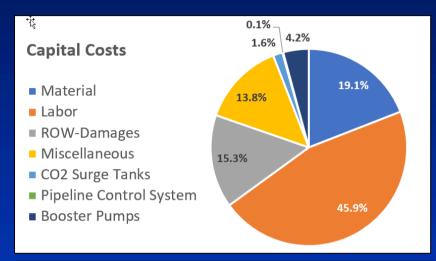
Fina

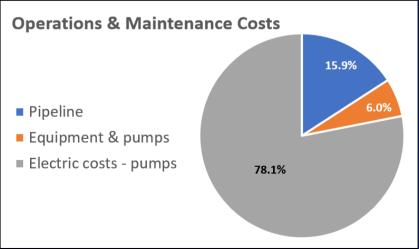
July 11, 201

FE/NETL CO2 Transport Cost Model Grant & Morgan, 2014

- NETL model provides itemized costs for capital and O&M
- Added an input/output table to calculate pipeline network segment costs

Pipeline assumptions and cost model


FE/NETL CO2 Transport Cost Model Grant & Morgan, 2014


- NETL model provides itemized costs for capital and O&M
- Compared to \$100k/inch-mile:
 Estimates <u>+</u>10% for individual
 segments and <u>+</u>3% for systems

Assumptions/Inputs

- 90% of plant rating for CO2 production (EIA 2016)
- 110% distance in miles
- 2000-1400 psi drops
- Booster stations
- Delivered to field at 1400 psi

CapX and OpX by expense category

Assumptions and methodology for simple financial model

- All financed in same manner: Ethanol plant capture, dehydration, and compression and pipeline construction
- All operations begin simultaneously: Capture facilities, pipeline, and sales points (oil fields)
- ✓ Twenty-two year project
- ✓ Two year construction phase
- ✓ 20-year operations and amortization
- ✓ Zero inflation
- ✓ Determine CO2 price required for CO2 to provide a specified ROR (NPV=0)

Two Finance Scenarios

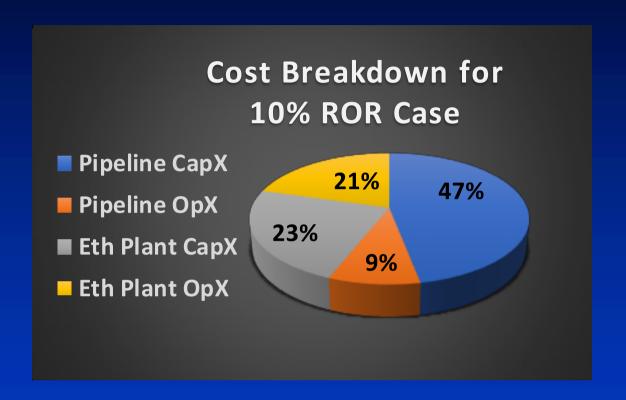
Weighted Average Return = 10.0%

Taxable Bond BBB- (50%@5%) Regular LLC (50%@15%)

Weighted Average Return = 6.7%

Tax-Exempt PAB BBB (55%@4%)
Publicly Traded MLP (45%@10%)

Economic Analysis of Ethanol CO2 Capture and Transportation at Varying Scales


- Evaluated multiple scenarios Four discussed today
- Range from simple, point-to-point (one source) to complex multi-source (up to 32 sources)
- Considered two Equity-Debt financing scenarios

Mean CO2 Price Required			
Required ROR	10%	6.7%	
\$/tonne	\$42	\$35	
\$/mcf	\$2.20	\$1.85	
\$/gal ethanol	\$0.14	\$0.12	
(Scenarios 1A, 2, 3)			

- Average for 3 of 4 of scenarios (1A, 2, 3) at two ROR
- Proposed 45Q tax credit (\$35/tonne) could cover most of cost

CO2 price for required ROR (weighted average cost of capital)

Average cost allocation across three scenarios

For the 10% ROR Case

Ethanol plant \$18 /tonne, \$0.85 /mcf, \$0.061 /gal (capture and compress)

Pipeline (transport) \$23 /tonne, \$1.23 /mcf, \$0.78 /gal

More details on cost allocation

Perspective:

CO2 for EOR in W TX sells for \$1/mcf (2% of WTI price - \$50/BO)

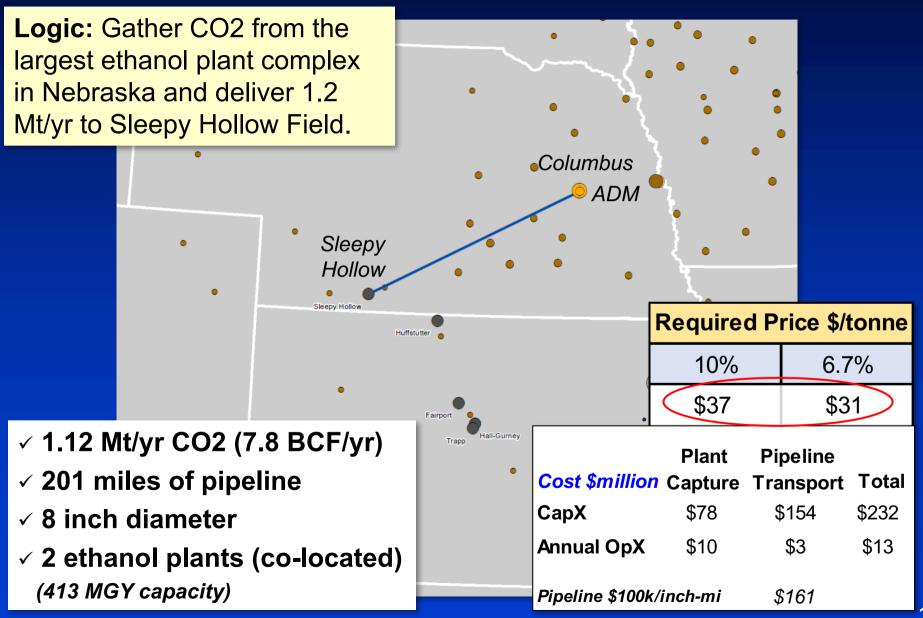
Three years ago WTI was \$100/BO (\$2/mcf CO2)

Proposed 45Q tax credit is \$1.85/mcf (\$35/tonne)

Cost Breakdown for 6.7% ROR case					
	\$/tonne	\$/mcf	\$/gal		
Pipelines	СарХ	\$15.15	\$0.80	\$0.051	
	ОрХ	\$3.79	\$0.20	\$0.013	
Ethanol Plants	СарХ	\$7.55	\$0.40	\$0.025	
	ОрХ	\$8.58	\$0.45	\$0.029	
		(\$35)	\$1.85	\$0.117	

Cost Breakdown for 10% ROR case					
		\$/tonne	\$/mcf	\$/gal	
Pipelines	СарХ	\$19.60	\$1.03	\$0.065	
	ОрХ	\$3.79	\$0.20	\$0.013	
Ethanol Plants	СарХ	\$9.77	\$0.51	\$0.033	
	ОрХ	\$8.58	\$0.45	\$0.029	
		(\$42)	\$2.20	\$0.139	

Average for three of the four scenarios at two ROR


Simple summary for the four scenarios

CO2 price for required ROR of 10% and 6.7% (weighted average cost of capital)

	Ethanol	Pipeline	CO2	Required Price \$/tonne		Required Price \$/mcf	
Scenario	Plants	Miles	(Mt/yr)	10%	6.70%	10%	6.70%
1A	2(1)	201	1.12	\$37	\$31	\$1.95	\$1.64
1B	1	16	0.15	\$33	\$28	\$1.75	\$1.47
2	15	737	4.26	\$42	\$35	\$2.19	\$1.84
3	34	1546	9.85	\$47	\$39	\$2.46	\$2.06

- 1A Point-to-point, two ADM plants (413 MGY) to Sleepy Hollow field, Nebraska
- 1B Generic Kansas point-to-point, 55 MGY plant to oil field within 16 miles
- 2 Fifteen plants (1575 MGY) to seven Kansas oil fields
- 3 Thirty-four plants (3643 MGY) through Kansas all the way to Permian Basin

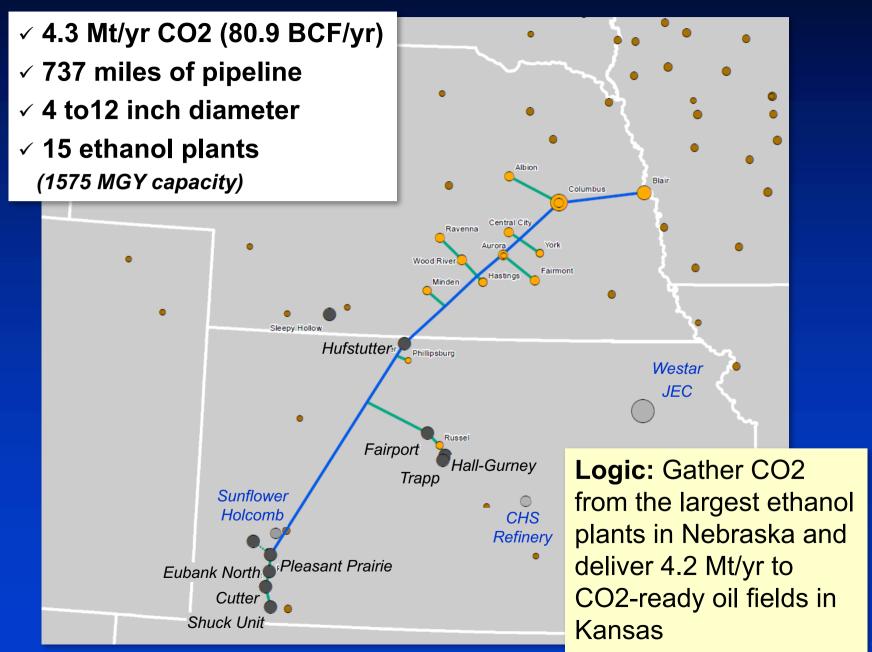
Scenario 1A Large point-to-point

Scenario 1B Small point-to-point

Kansas Examples:

Modeled: 148,000 tonnes/yr transported 16 miles

- ✓ Kansas Ethanol, Lyons (55MGY) to Geneseo Edwards Field
- ✓ USEP, Russell (55MGY) to Hall-Gurney
- ✓ Prairie Horizon, Phillipsburg (40MGY) to Huffstutter


Could be attractive at \$75/BO

45Q credits could make it lucrative at today's prices

LCFS credits could make storage without EOR possible

Cost Breakdown (\$/tonne)				
Requ	10%	6.7%		
Pipelines	CapX	\$9.12	\$7.05	
	ОрХ	\$1.48	\$1.48	
Ethanol Plants	CapX	\$14.09	\$10.89	
	ОрХ	\$8.58	\$8.58	
TOTAL	\$/tonne	\$33	\$28	
	\$/mcf	\$1.75	\$1.47	
	\$/gallon	\$0.11	\$0.09	

Scenario 2: Fifteen plants to Kansas oil fields

Scenario 2: Economics

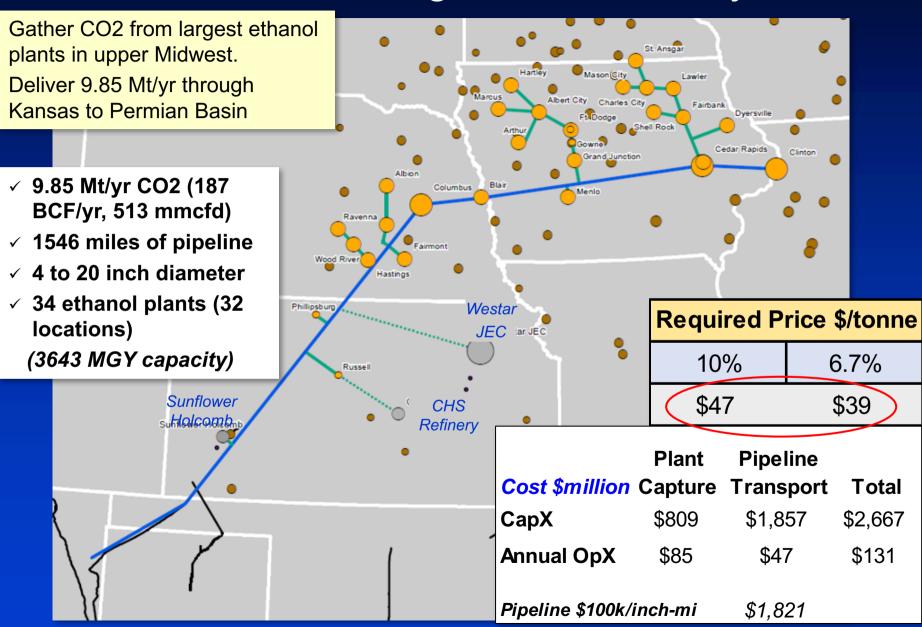
Estimated Project Costs

	Plant	Pipeline	
Cost \$million	Capture	Transport	Total
СарХ	\$364	\$642	\$1,006
Annual OpX	\$37	\$16	\$53

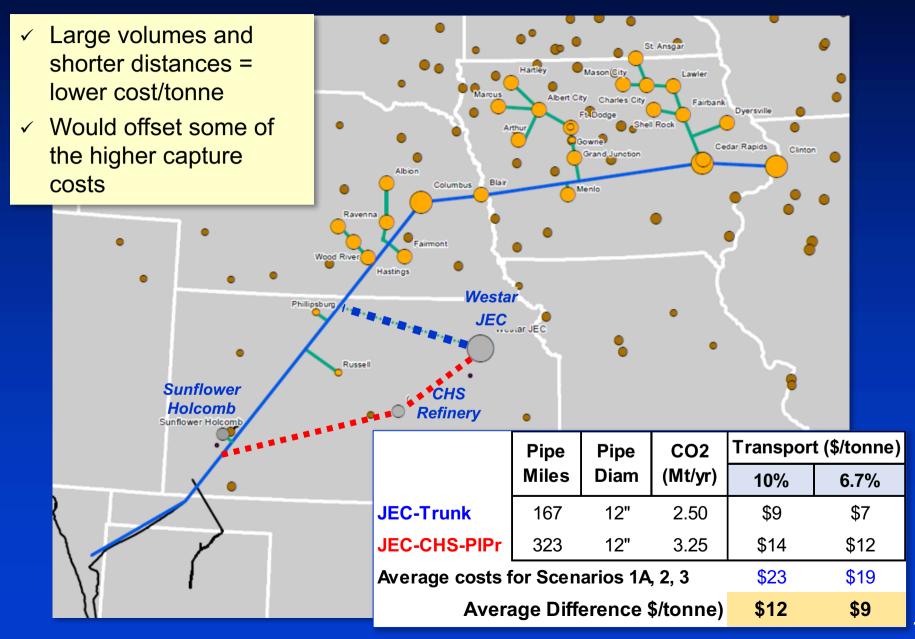
Note: Rule of thumb\$100k/inch-mile yields \$613million CapX for pipeline

Cost breakdown (\$/unit CO2) for two Cost of Capital cases

Cost of Capital = 10%


Pipeline Combined **Ethanol** CapX (\$/tonne) \$18.60 \$10.55 \$29.15 OpX (\$/tonne) \$3.80 \$8.58 \$12.39 Total (\$/tonne) \$42 \$22 \$19 \$/tonne CapX (\$/mcf) \$0.98 \$0.56 \$1.53 OpX (\$/mcf) \$0.20 \$0.45 \$0.65 Total (\$/mcf) \$2.19 \$1.18 \$1.01 \$/mcf

Cost of Capital = 6.7%


•	Pipeline	Ethanol	Combined
CapX (\$/tonne)	\$14.37	\$8.15	\$22.52
OpX (\$/tonne)	\$3.80	\$8.58	\$12.39
Total (\$/tonne)	\$18	\$17	\$35
			\$/tonne
CapX (\$/mcf)	\$0.76	\$0.43	\$1.19
OpX (\$/mcf)	\$0.20	\$0.45	\$0.65
Total (\$/mcf)	\$0.96	\$0.88	\$1.84
			Close of

\$/mcf

Scenario 3 Large-scale, 10 Mt/yr

Westar and CHS would reduce overall transport cost

Parting Comments

- 45Q passes better move quickly
- If not, smaller scale projects possible
- Keep an eye on larger industrial source opportunities

Mean CO2 Price Required			
Required ROR	10%	6.7%	
\$/tonne	\$42	\$35	
\$/mcf	\$2.20	\$1.85	
\$/gal ethanol	\$0.14	\$0.12	
(Scenarios 1A, 2, 3)			

Discussion

- Economic modeling?
- Potential for lowering costs?
- Kansas have the resource to support 4Mt?

Later today in open discussion

- Business model(s) to pull it all together
- How would credits be captured? And shared?
- Ins and outs of 45Q and LCFS credits?