

THE LINDE GROUP

Integrated CCS for Kansas (ICKan): CO₂ source assessment Preliminary design for capture from fossil fuel sources

Carbon Capture, Utilization and Storage in Kansas Krish R. Krishnamurthy, Linde LLC September 21, 2017 Wichita, KS

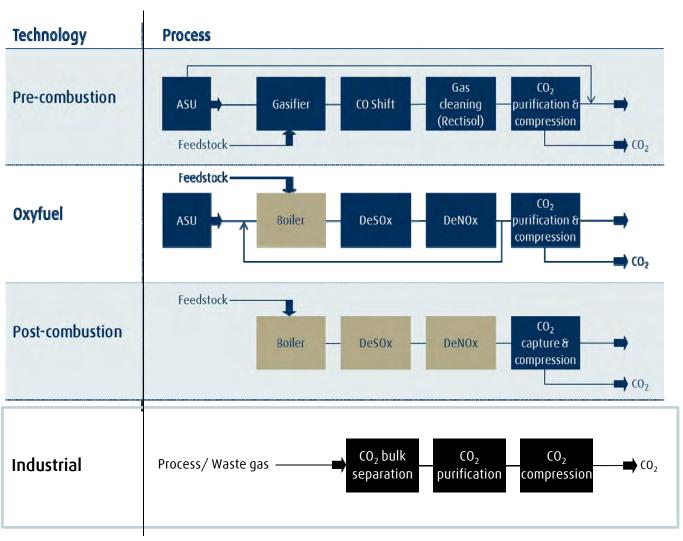
ICKan Project Phase 1: CO₂ Sources & Capture Options Assessment - Objectives

Overall Objective

— Identify CO_2 emission sources and assess cost effective capture and compression options to provide 50 Million tonnes/ CO_2 for the ICKan project CO_2 utilization and storage network

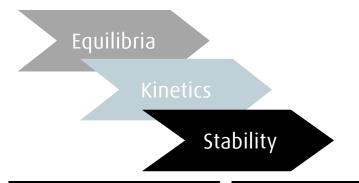
Specific Objectives

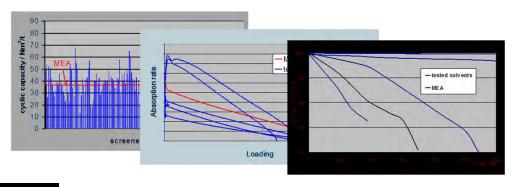
- Identify large single point CO_2 emissions sources (e.g. power plants and industrial CO_2 emissions) in Kansas state that can deliver the targeted captured CO_2 volumes for the ICKan EOR utilization /geological storage sites
- Obtain data from the source facilities for preliminary assessment of CO₂ capture and compression
- Perform conceptual design to assess CO₂ capture and compression costs.



CO ₂ Source	Key drivers	Challenges
Coal fired power plant Lead source: Westar's Jeffrey's Energy Center, St. Marys, KS (other coal plants available)	 Large single point source Partial capture from one of the three-trains can enable meeting ICKan target 	 Cost of capture Economic incentives Contaminant & issues related to specific site design (aerosols) Coal vs wind power economics in region
Refinery CHS SMR Hydrogen Plants (other sources, e.g. FCC boiler within refinery)	 Intermediate CO₂ volumes Can contribute to ICKan target Could promote economics with access to CO₂ pipeline 	 Non-SMR CO₂ sources distributed in site Low pressure steam availability
Ethanol (Corn-based Fermentation plants)	 Significant number of lower volume but higher CO₂ concentration source ideal for pipeline aggregation Bio-based may contribute to CO₂ footprint 	 Cost of specific contaminant removal if required (e.g. O₂, aldehydes, alcohols, H₂S/COS) Low volumes and longer distances to market/storage sites

Pathways of CO₂ capture. Linde's technology portfolio.




Solvent based capture is focus of this presentation:

- Applicable to new or retrofit plants
- Capture all or part of flue gas
- Applied at large scale in other applications
- Novel solvents (e.g. OASE® blue) stable in presence of flue gas contaminants & O₂
- Significant progress made toward the capture cost goal
- Recent successful large scale implementations (Boundary Dam, Petronova) provide confidence for future projects

BASF OASE® blue technology roadmap. Adopted & optimized for PCC applications.

Lab. & Mini plant (2004)

- Ludwigshafen, Germany
- Solvent selection & performance verification

Pilot: 0.45 MWe (2009)

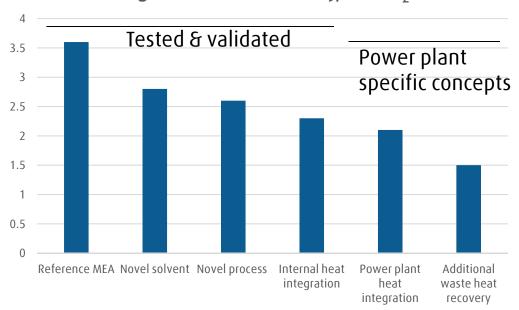
- Niederaussem, Germany
- Process opt., materials & emissions testing

Pilot: 1.5 MWe (2014-2016)

- Wilsonville, AL (NCCC)
- Design improvements, emissions confirmation

Large Pilot (proposed): 10+ MWe (2017-2020)

- Abbott power plant, UIUC, Champaign, IL
- Full value chain demo.



Linde-BASF progress toward lowering the cost of capture

Reducing low pressure steam consumption:

Regenerator steam in GJ/MT CO₂

Capex reduction:

- High capacity structured packing (smaller diameter absorbers)
- Higher pressure regeneration (Reduced CO₂ compressor cost)
- Novel lower cost equipment (e.g. reboiler, inter-stage heater)

Electrical energy reduction:

CO₂ compression power by operating at higher regenerator pressure

Other features for lower Opex:

- Reduced solvent inventory
- Fast dynamics for load following

Westar Jeffrey's Energy Center: A large power plant CO₂ source capable to deliver the entire CO₂ capture volume required for ICKan through partial capture installation

Power plant facts:

- 3 x 800 MWe power plants located in St. Marys, KS with a total nameplate annual CO₂ emissions of 12.5 million tonnes.
- Power plants built in the 1980's but fitted in the past decade with selective catalytic reduction (SCR) based NOx removal, activated carbon sorbent based Hg removal and scrubber based flue gas desulfurization (FGD)

Capture opportunity:

- Partial CO₂ capture installation (~583 MWe flue gas) from one of the three power plants can satisfy the entire ICKan CO₂ integrated capture, compression and storage target over a 20 years project period
- Solvent based post-combustion capture likely technology option for implementation by 2025 due to technology maturity and capture capacity

Capture challenge:

- Not fitted with baghouse; potential aerosol in flue gas causing solvent carry-over and losses
- Concerns about the long term power plant utilization capacity with increasing wind power coming online

Overall integrated project economics:

 Sources of waste heat to generate low pressure steam for solvent regeneration, thereby reducing parasitic power consumption (e.g. full capacity waste heat utilization for partial CO₂ capture)

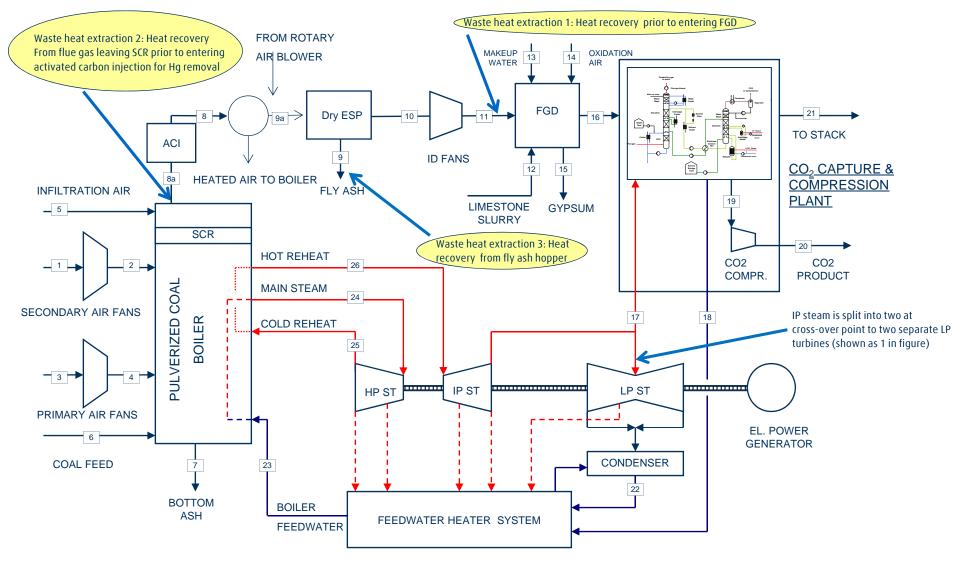
Westar Jeffrey's Energy Center: Preliminary CO₂ capture assessment/Design basis

CO₂ product:

- 2.5 million MT (20 yrs) or 7500 MTPD
- 90% capture efficiency
- 99.7+% purity (<100 ppmv Oxygen)</p>
- 150 bars delivery pressure at site boundary

Flue gas processed:

- Target flue gas flow rate: 2063 MT/hr (wet)
- Flue gas composition: CO_2 10.8% wet; 13.2% dry O_2 5.1% wet; 6.3% dry
- Target capture plant capacity: 583 MWe (~73% of Unit 1)


Operating requirements:

- Regenerator LP steam (4.8 bar): 1.16 tons/ton CO₂
- Electrical power: 129 kW/ton CO₂ (40 MW)
- Cooling water: $112 \text{ m}^3/\text{ton } CO_2 (36,000 \text{ m}^3/\text{hr})$

Power plant block flow diagram showing potential waste heat extraction to generate LP steam for PCC plant

CHS refinery: SMR H₂ plants can deliver cost effective CO₂ capture to partially meet the ICKan CO₂ capture volume target

Steam Methane Reformer H₂ plant facts:

- 2 x ~40,000 Nm3/hr H₂ plant capacities. Plants incorporate PSA (Pressure swing adsorption) based H₂ purification with purge gas used as reformer fuel.
- Total name-plant CO₂ emissions with SMR furnace flue gases is ~760,000 Tonnes/year. This meets 30% of the ICKan CO2 capture and storage capacity over a 20 year project.

Capture opportunity:

- Solvent based post-combustion capture from the reformer furnace flue gas will result in maximum CO₂ emissions reduction (~90% of total emissions from SMR H₂ plants).
- Sorbent based (pressure or vacuum swing adsorption) capture from syngas or purge gas are likely technology options for partial capture (~50-60% of total SMR H₂ plant emissions) as they are more cost effective than solvent based due to relatively smaller capture capacity.

Capture challenge:

- Non-H₂ plant refinery CO₂ emissions distributed and in smaller amounts
- Unfavorable steam balance necessitating separate generation of low pressure steam for CO₂ capture plant
- Current lower H₂ plant loading may affect scale of CO₂ capture

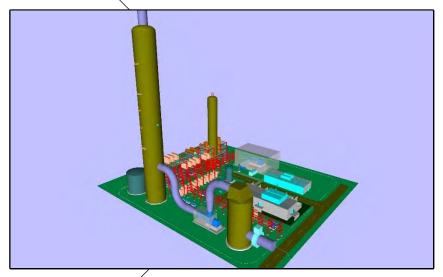
Overall integrated project economics:

- Shorter distance (access pipeline) to EOR and/or storage sites targeted.
- Additional steam generation for refinery needs combined with LP steam for solvent regeneration may be attractive.

 $\frac{1}{10}$

CHS refinery SMR H₂ plant CO2 capture: Preliminary assessment and design basis

CO₂ product:


- 1872 MTPD (~13.6 million tons over 20 yrs)
- 90% capture efficiency
- 99.7+% purity (<100 ppmv Oxygen)</p>
- 150 bars delivery pressure at site boundary

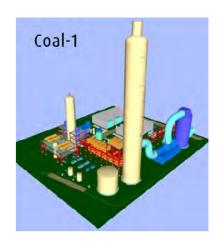
Flue gas processed (mixed from 2 SMR's):

- Target flue gas flow rate: 362.7 MT/hr (wet)
- Flue gas composition: CO_2 15.8% wet; 19.1%dry O_2 2.2% wet; 2.7% dry
- Target capture plant capacity: 100% of available
 SMR H₂ plant furnace flue gases (2 plants)

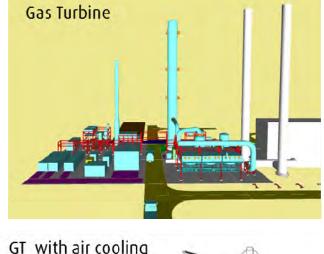
Operating requirements:

- Regenerator LP steam (4.8 bar): 1.17 tons/ton CO₂
- Electrical power: 123 kW/ton CO₂ (9,600 kW)
- Cooling water: $115 \text{ m}^3/\text{ton } CO_2 (9000 \text{ m}3/\text{hr})$

Questions?



Thank you for your attention!


Back-up slides

Linde has performed number of large scale studies/ process concepts and engineering assessment tailormade based on end-customer requirements

