Energy Reduction Analysis at New Prague Wastewater Treatment Facility

Emily Wen
MnTAP advisor: A.J. Van den Berghe
On-Site Supervisor: Scott Warner
Minnesota Technical Assistance Program

- Created in 1984
- University of Minnesota
- Staffed by Scientists and Engineers
- Process Specific Assistance
- Confidential and Non-regulatory
MnTAP Mission

Strengthening Minnesota businesses by improving efficiency, while saving money through energy, water and waste reduction.

• Businesses remain competitive
• Improve employee and public health
• Protect the environment
MnTAP Services

- Technical Assistance
 - Site assessment visits
 - Phone and e-mail requests
 - Intern program
 - Demonstrations/Research
- Minnesota Materials Exchange
- Communications and Outreach
Company Overview

• Remove contaminants from wastewater
• 7,700 residents
• Regulated by Minnesota Pollution Control Agency
• Class A wastewater facility
• Upgraded in 2010
• Many energy savings ideas implemented, knew of more opportunities but unsure how to proceed
City of New Prague Wastewater Plant Flow Diagram

Raw Wastewater (Influent) → Rag and Grit Removal (1) → Multi Flow Clarifier (2) → Biological Aerated Filter (BAF) (3) → Membrane Filter (4) → UV System (5) → Treated Water to River (Effluent)

- Backwash Holding
- Sludge Storage
- Sludge Press (6) → Sludge Dryer (7)

- Water for plant reuse (Backwash and wash water)
- Water Softeners
- Land Application
- To Landfill

[Diagram Image]
Incentives to Change

• Operating budget covered by water and sewage fees
 • Have exceeded budget
 • Excess covered in city taxes

• Next MPCA permit may include more requirements
 • Require additional equipment
 • Minimize energy increase with optimizing

• SMMPA and MnTAP reached out to us to partner in energy savings

• St. Peter, MN had a successful project in 2016
Project Overview

1. **Characterize energy consumption plant-wide**
 - Identify energy-intensive equipment
 - Observe yearly consumption trends

2. **Quantify scrubber/HVAC reductions**
 - Determine suitable # air changes per hour (ACH)
 - Predict savings for reduced exhaust fan speeds

3. **Assess Biological Aerated Filter (BAF) blower reduction**
 - Dissolved oxygen aeration model

4. **Ultrasonic leak study**
 - Find compressed air leaks

5. **Lighting audit**
 - Determine suitable LED replacements and resulting savings
EPA Energy Assessment Tool

• Track energy usage for small wastewater facilities
 • Excel spreadsheet

• Method:
 • Collect utility bills from 2014-2017
 • Collect motor specification data

• Focus on electricity reduction

<table>
<thead>
<tr>
<th>Utility</th>
<th>Site Utility Use</th>
<th>Site Utility Costs</th>
<th>% of Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>2,183,200 kWh</td>
<td>$166,663</td>
<td>76%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>79,167 CCF</td>
<td>$48,180</td>
<td>22%</td>
</tr>
<tr>
<td>Water & Sewer</td>
<td>870,000 GAL</td>
<td>$4,100</td>
<td>2%</td>
</tr>
</tbody>
</table>

$718/MGAL Treated
Top Electrical Energy Use Systems

- #1 Odor Control: 23%
- #2 Sludge Handling: 20%
- #3 BAF Treatment: 15%
- #4 Non-process HVAC: 14%
- #5 Internal Plant Pumping: 12%
- Balance of Plant Identified: 11%
- Balance of Plant Unidentified: 5%

Balance of Plant Identified
Balance of Plant Unidentified

#1 Odor Control
#2 Sludge Handling
#3 BAF Treatment
#4 Non-process HVAC
#5 Internal Plant Pumping
Balance of Plant Identified
Balance of Plant Unidentified
Quantify scrubber/HVAC reductions
Odor Scrubbers

<table>
<thead>
<tr>
<th>Room</th>
<th>Air changes per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAF</td>
<td>7.2</td>
</tr>
<tr>
<td>Pretreatment</td>
<td>4.8</td>
</tr>
<tr>
<td>Biosolids</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Option 1.1: 7.2 to 4.9 ACH → Implemented

<table>
<thead>
<tr>
<th>ACH</th>
<th>Annual Energy Consumption</th>
<th>Annual Operating Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>156,490 kWh, 536 therms</td>
<td>$11,900, $332</td>
</tr>
<tr>
<td>4.9</td>
<td>50,303 kWh, 383 therms</td>
<td>$3,825, $240</td>
</tr>
</tbody>
</table>

Savings

106,000 kWh, 150 therms

$8,100
Option 1.2: Switch fans and reduce to 4.9 ACH

Swap biosolids and BAF scrubber fan
 • Reduce fan flow rate from 7,600 to 5,283 ACFM

<table>
<thead>
<tr>
<th>ACH</th>
<th>Annual Energy Consumption</th>
<th>Annual Operating Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>102,618 kWh</td>
<td>$7,800</td>
</tr>
</tbody>
</table>

Savings

| Savings | 21,035 kWh | $1,600 |
Option 1.2: Further investigation/not recommended

- BAF and biosolids odor scrubbers are different models
 - Undetermined volumetric capacities
- Undetermined labor costs
 - Likely a week
- Requires further investigation by Evoqua engineers
Assess BAF Blower Reduction
Biological Aerated Filter (BAF)

- **Secondary treatment**
 - Removes total suspended solids (TSS), ammonia, and carbonaceous biological oxygen demand

- **Microbes require oxygen**
 - 0.5-2 mg/L dissolved oxygen (DO)
Option 2.1: Adjust controls settings

• Reduces blower operating hours
• Optimal set point at 1.5 gallons per minute per sqft

New Prague SCADA set point screen shot
Option 2.1: Adjust SCADA settings → Implemented

<table>
<thead>
<tr>
<th>Condition</th>
<th>Annual Energy Consumption</th>
<th>Annual Operating Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 Baseline (min. 2 cells, TCV=1.0 gpm/sqft)</td>
<td>385,300 kWh</td>
<td>$29,283</td>
</tr>
<tr>
<td>2017 Baseline (min 1 cell, TCV=1.5 gpm/sqft)</td>
<td>237,693 kWh</td>
<td>$18,065</td>
</tr>
</tbody>
</table>

Savings

148,000 kWh $11,200
Option 2.2: Install VFDs to BAF Blowers → Recommended

- Reduces power consumption during operation
- Eliminate inrush
 - Reduces electric costs
 - Increase blower lifespan

Allen Bradley PowerFlex 753, the proposed VFD for installation
Option 2.2: Install VFDs to BAF Blowers

Annual Electric Costs

<table>
<thead>
<tr>
<th>mg/L DO</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$2,000</td>
</tr>
<tr>
<td>3</td>
<td>$4,000</td>
</tr>
<tr>
<td>4</td>
<td>$6,000</td>
</tr>
<tr>
<td>5</td>
<td>$8,000</td>
</tr>
<tr>
<td>6</td>
<td>$10,000</td>
</tr>
<tr>
<td>7.16</td>
<td>$18,000</td>
</tr>
</tbody>
</table>

Star indicates the optimal mg/L DO level.
Option 2.2: Install VFDs to BAF Blowers

<table>
<thead>
<tr>
<th>Condition</th>
<th>Annual Energy Consumption</th>
<th>Annual Operating Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 Baseline (min 1 cell, TCV=1.5 gpm/sqft)</td>
<td>237,693 kWh</td>
<td>$18,100</td>
</tr>
<tr>
<td>4.0 mg/L target DO</td>
<td>130,560 kWh</td>
<td>$9,922</td>
</tr>
</tbody>
</table>

Savings

107,000 kWh
$8,142
New Prague Effluent Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit (mg/L)</th>
<th>Limit Type</th>
<th>Effective Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen (DO)</td>
<td>7</td>
<td>Calendar Month Minimum</td>
<td>Jan-Dec</td>
</tr>
<tr>
<td>Carbonaceous Biological Oxygen Demand (CBOD), 05 Day</td>
<td>5</td>
<td>Calendar Month Average</td>
<td>Jan-Dec</td>
</tr>
<tr>
<td>Nitrogen, Ammonia, Total</td>
<td>7.7</td>
<td>Calendar Month Average</td>
<td>Dec-Mar</td>
</tr>
<tr>
<td>Nitrogen, Ammonia, Total</td>
<td>1.3</td>
<td>Calendar Month Average</td>
<td>Apr-May</td>
</tr>
<tr>
<td>Nitrogen, Ammonia, Total</td>
<td>1.0</td>
<td>Calendar Month Average</td>
<td>Jun-Sep</td>
</tr>
<tr>
<td>Nitrogen, Ammonia, Total</td>
<td>1.9</td>
<td>Calendar Month Average</td>
<td>Oct-Nov</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>30</td>
<td>Calendar Month Average</td>
<td>Jan-Dec</td>
</tr>
</tbody>
</table>
Ultrasonic Leak Study
8 Leaks Found

Photo credit: Marcus Hendrickson
6 Additional Leaks Found
Option 3.1: Seal compressor leaks

<table>
<thead>
<tr>
<th>Condition</th>
<th>Annual Energy Consumption</th>
<th>Annual loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 leaks</td>
<td>13,820+ kWh</td>
<td>$1,050+</td>
</tr>
</tbody>
</table>

- **Status: In progress**
 - 9 leaks fixed
 - $827+ saved annually

- **Implementation Cost**
 - $220
Lighting Audit
LED Technology Constantly Improving

• New Prague WWTF lighting
 • 112 lights are on 24/7

• LED refits
 • Longer lifespan (50,000 hours)
 • Lower power consumption (18 watt)
 • Compatible with ballasts

LED exterior fixture in progress of installation

Main hall lighting
Stairwell lighting
Option 4.1: Upgrade lights to LED

<table>
<thead>
<tr>
<th>Condition</th>
<th>Annual Energy Consumption</th>
<th>Annual Operating Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescent/MH/HPS</td>
<td>70,268 kWh</td>
<td>$5,340</td>
</tr>
<tr>
<td>LED</td>
<td>41,654 kWh</td>
<td>$3,165</td>
</tr>
<tr>
<td>Savings</td>
<td>28,613 kWh</td>
<td>$2,175</td>
</tr>
</tbody>
</table>
Potential Savings Summary

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Annual Reduction</th>
<th>Implementation Cost</th>
<th>Annual Savings</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce ACH to 4.9</td>
<td>106,000 kWh 150 therms</td>
<td>$0</td>
<td>$8,100</td>
<td>-</td>
<td>Implemented</td>
</tr>
<tr>
<td>SCADA change and reduce DO to 4.0 mg/L using VFD</td>
<td>254,740 kWh</td>
<td>TBD</td>
<td>$19,300</td>
<td>4-5 years</td>
<td>Recommended</td>
</tr>
<tr>
<td>Seal leaks</td>
<td>13,820 kWh</td>
<td>$220</td>
<td>$1,050+</td>
<td>2.6 months</td>
<td>In Progress</td>
</tr>
<tr>
<td>Upgrade to LED</td>
<td>28,600 kWh</td>
<td>TBD</td>
<td>$2,100</td>
<td>2-3 years</td>
<td>Recommended</td>
</tr>
<tr>
<td>Totals</td>
<td>403,000 kWh 150 therms</td>
<td>TBD</td>
<td>$30,550</td>
<td>TBD</td>
<td>-</td>
</tr>
</tbody>
</table>
Future recommendations

• Reduce scrubber and make-up air unit to 4.0
 • Reduces 125,000 kWh and $9,500

• Study VFD installation on main lift station pump effects
 • Eliminate inrush throughout facility
 • More efficient chemical feed
 • Prolong motor life

• Sludge aeration blower
 • Possible upgrades and installations
 • Contacted Aeration Industries International
Special thanks to the following

AJ Van den Berghe
Scott Warner
John Granlund
Adam Jirak
Joe Wagner
Nathan Landwehr
Marcus Hendrickson
Kim Lee
Lora Novotny
Jon Peterson
Doug Swanson
Devang Pujara
Daryl Bond
Mark Drake
Ryan Cairl
Jon Vanyo
Randy Keranen
Daryld Miller
Chad Lunder
Eric Bennett
Jeff Boumeester
Bruce Stasney
Thank you for listening!

Questions?

This project was funded in part by Southern Minnesota Municipal Power Agency